
Exposing Semantic Web Service principles in SOA to solve
EAI scenarios

Armin Haller
Digital Enterprise Research

Institute
National University of Ireland

Galway, Ireland

armin.haller@deri.org

Juan Miguel Gomez
Digital Enterprise Research

Institute
National University of Ireland

Galway, Ireland

juan.gomez@deri.org

Christoph Bussler
Digital Enterprise Research

Institute
National University of Ireland

Galway, Ireland

christoph.bussler@deri.org

ABSTRACT
Traditional Enterprise Application Integration (EAI) focuses on the
integration of application interfaces by pipelining different middle-
ware technologies like message queuing or remote method invoca-
tions. Web Service enabled Service-Oriented Architectures (SOAs)
used in EAI were a step towards providing an abstraction layer for
the involved interfaces by using the Web Service Description Lan-
guage (WSDL) [9]. We enlarge the notion of SOA by applying
Semantic Web Services (SWS) technology to it. The architecture
employs principles developed in work already published on SWS
architectures [18, 40] to demonstrate their applicability in EAI. We
examine what current SWS technology offers in respect to the re-
quirements imposed by EAI scenarios. The major focus of the pa-
per is to point out the potentials current SWS technology offer for
EAI. This analysis includes some challenges for SWS frameworks
to fully enable dynamic discovery and invocation in EAI. It further
concludes that both are already possible in intra-EAI scenarios un-
der certain assumptions. We demonstrate the applicability of the
Web Service Execution Engine (WSMX), as first kind of a Seman-
tic Service Oriented Architecture (SSOA) in a high-level use-case
to exemplify the activities within the lifecycle of such an architec-
ture.

1. INTRODUCTION
In recent years Enterprise Application Integration (EAI) systems

have evolved promising to solve one of the major problems IT de-
partments are facing - integration.

The business driver behind EAI projects is to integrate processes
across third-party applications as well as legacy systems to de-
crease the number of adapters one has to develop if connecting two
systems [29]. One of the reasons why a majority of EAI implemen-
tations fail (some articles even account for 70% of EAI projects as
failure [21]) is that the semantics of different systems have to be
integrated at one point. While EAI systems support a variety of
ways to enable a correct syntactic integration through passing valid
instance data [33], integrating the semantics of the underlying sys-
tems turns out to be difficult. Engineers integrating the enterprise
application systems have to know the meaning of the low-level data
structures in order to implement a semantical correct integration.
No formal definition of the interface data exists [8] which implies
that the knowledge of every developer of applications involved in
the integration project is assumed to be consistent.

Another problem early EAI systems faced laid in their origin.
They consisted mainly of a message-oriented middleware like Web-

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

Sphere MQ (formerly MQSeries)1, adapters and connectors to ac-
cess source and target components, transformation engines to map
information formats between source and target systems and some
intelligent routing [13]. Standards for these components, mainly
the internal semantics of the EAI system the adapter frameworks
mapped to, the transformation maps themselves, the process defin-
itions etc. were not considered at all in the beginning. Only when
the EAI market grew did the issue of standards start to appear. Pro-
prietary EAI vendors with market strength were keen to declare
their own implementations as standards. End users demanded stan-
dards to avoid the vendor lock-in and subsequently, to avoid a prob-
lem, they initially tried to solve with the EAI solution - to be able
to integrate their EAI system with other EAI systems [13]. Finally
new entrants entered the market advertising Web Service enabled
Service-Oriented Architecture (SOA) solutions based completely
on standards, claiming to make the integration effort flawlessly.

This new type of SOA relies on common Web Service tech-
nologies which allow interoperability by relying on standards like
UDDI [11], WSDL [9], SOAP [20] etc. As a consequence all major
integration software providers from different backgrounds (Appli-
cation Server vendors, EAI vendors, Portal software vendors etc.)
enlarged their products to support these Web Service Standards
[33]. Eventually some of them (examples include IONA Artic2

and Microsoft BizTalk3 even redeveloped their integration suite to
realise the integration as SOA.

This new SOA model is based on the principle that business
functionality is separated and published as self-contained compo-
nents, called services. They are subsequently used to be composed
into a process. This Web Service enabled SOA model has some
fundamental advantages over traditional EAI systems:

• the functionality in a SOA can be reused to a high degree;
• relying on standards it provides a highly flexible and adapt-

able implementation;
• and it becomes eventually possible to switch from a particu-

lar service to a different one without adaptions.

According to this, a Web Service enabled SOA offers a solution
to the standards problem by avoiding the central point of integra-
tion, often a bottleneck in EAI solutions. Furthermore it still re-
duces the number of point-to-point adapters since every interface
is based on WSDL and can communicate with every other WSDL
enabled interface. What it does not solve is the problem of docu-
menting the semantics of these interfaces.
1see http://www-306.ibm.com/software/integration/wmq/
2see http://www.iona.com/products/artix/
3see http://www.microsoft.com/biztalk/

By enlarging the notion of SOA with semantics we provide a
formal description of the functionality of a Web Service to allow
the developer to base the manual integration, if necessary at all,
on this knowledge about the meaning of the data. Determining
the semantics for interfaces means to define the concepts as well
as the relationships between them through an ontology language
[18]. Semantics bring closer the possibility of switching services
dynamically by discovering them at runtime.

The next section explains the concepts of EAI, how Web Ser-
vice enabled SOA constitutes a different approach and what lim-
itations still underlie current integration solutions. In section 3.1
we describe WSMO as the underlying framework for our Seman-
tic Service-Oriented Architecture (SSOA). The approach followed
to apply Semantic Web Services to SOA is illustrated in detail in
section 3.3. In the same section we explain what benefits a SSOA
offers in EAI scenarios. Furthermore we point out some remaining
challenges on SWS frameworks to exploit a fully dynamic envi-
ronment. Section 4 showcases the applicability of the Web Service
Execution Environment (WSMX) as a SSOA in EAI scenarios and
illustrates it on a use case. The paper concludes with a short dis-
cussion.

2. VIRTUE AND LIMITATIONS OF EAI
In the original sense the term EAI described only the concept of

semantic integration, but since the evolvement of systems covering
this domain the term has also been used to name the systems itself.
To subsequently show how semantically enabled SOA are applied
in EAI scenarios we first depict the functionality constituting these
EAI systems in the following paragraph.

2.1 EAI Concepts and Functionality
We can differ between internal and external integration. Inter-

nal integration, often referred as intra-EAI, specifies the automated
and event-driven exchange of information between various systems
within a company. Another commonly used term for it is ’Appli-
cation to Application’-Integration (A2A) [7]. External integration,
referred as inter-EAI, specifies the automated and event-driven in-
formation exchange of various systems between companies. In re-
cent publications the second integration type is commonly referred
to as B2B integration [7].

EAI systems provide different types of integration levels explain-
ing the various dimensions of the integration tasks. Literature iden-
tifies the following three layers common to EAI systems [43, 14].

Process Layer

Within the process layer we differ between components for
process modelling and process enactment support.

The purpose of process modeling is to produce an abstrac-
tion of a process model called workflow type [22] that can
be either used for improved human understanding of opera-
tions within a domain or to serve as the basis for automated
process enactment. In the case of EAI it is used for the latter.

Process enactment refers to the proactive control of the entire
process from instancing a predefined workflow type all the
way to its completion.

When talking about process models in EAI a clear separa-
tion between private and public processes has to be made.
This separation is well established in research [6] and dif-
ferent business process modelling standards (i.e. BPEL [1],
WSCI [2]) incorporate it. It is the key to provide the nec-
essary isolation and abstraction between the organisation’s
internal processes and processes across organisations.

Transformation Layer

This layer ensures the proper routing and transformation of
messages between the applications to be integrated. Trans-
formation refers to a process of selecting, targeting, convert-
ing and mapping data so that it can be used by multiple sys-
tems [43]. The transformation addresses the mismatch of
data either at the lower-level of data type representation or at
the higher-level of mismatched data structures. Mismatched
data types may arise when two services use different binary
representation for some data type. Dissimilar data structures
on the other hand involve two different structures to represent
the same body of data.

Transportation Layer

The Transportation Layer provides the system- and platform-
independent communication between the integration tool and
the participating applications. It consists of a common pro-
tocol layer and adapters which transform external events in
messages and vice versa [43].

Most EAI systems support some sort of asynchronous trans-
port layer, either proprietary or open ones. For instance,
many leverage IBM WebSphere MQ or more open systems
such as Java Messaging Service (JMS) or the Object Mes-
saging System (OMS) [33].

2.2 Service-Oriented EAI Architectures
SOA is a set of independently running services communicating

with each other in a loosely coupled manner via event-driven mes-
sages. Although the concepts behind SOA were established before
Web Services came along and a service within a SOA is completely
independent of the concept of a Web Service, current SOA architec-
tures employ them [24]; Web Services naturally implement the phi-
losophy of a SOA by using lightweight protocols based on widely
accepted standards.

Established technologies for SOA include for example the Com-
mon Object Request Broker Architecture (CORBA)4 administered
by the Object Management Group (OMG). It is a vendor-independent
architecture that applications based on different programming lan-
guages can use to work together over networks. In contrast to
Web Services which are mostly based on SOAP/HTTP, services in
CORBA typically communicate via the IIOP (Internet Inter-ORB
Protocol). The second major differences is the tight coupling of
two CORBA services in comparison to the loose coupling between
Web Services. In CORBA objects are shared between components,
whereas Web Services communicate primarily over message.

The difference in the SOA approach to traditional EAI lies pri-
marily in the way applications are seen in the architecture. The
applications functionality is broken down into modules with well
defined standardised interfaces. SOA treats services as a means
of providing one functionality in a whole business process. Ap-
plications have to provide the standardised interface themselves in
order to be integrated. If they lack such an interface, it is still re-
quired to wrap their functionality to a well-defined Web Service
interfaces in order to participate in interactions with other applica-
tions. This wrapping process creates an abstraction layer that hides
all the complex details of the application similar to that achieved
with traditional EAI adapters. The difference lies in the standardi-
sation of the interface.

At a conceptual level, SOA is composed of three core pieces
[26]:

4see http://www.corba.org/

• Service registry: It acts as an intermediary between providers
and requesters. Most of these directory services categorise
services in taxonomies.

• Service provider: The Service Provider defines a service
description and publishes it to the service registry.

• Service requester: The service requester can use the direc-
tory services’ search capabilities to find service descriptions
and their respective providers.

The three activities the service requester and provider in a SOA
as depicted in figure 1 can perform are [26]:

• Publish: The service provider has to publish the service de-
scription in order to allow the requester to find it. Where it is
published depends on the architecture.

• Discover: In the discovery the service requester retrieves a
service description directly or queries the service registry for
the type of service required.

• Invoke: In this step the service requester invokes or initiates
an interaction with the service at runtime using the binding
details in the service description to locate, contact and invoke
the service.

Figure 1: Activities in a SOA cp. [25]

2.3 SOA in EAI and its weakness
In the following we show how traditional SOA addresses the

three functional layers of EAI and identify its limitations which
are mainly caused by the absence of semantics in the service de-
scriptions.

Process Layer

The technology of choice within SOA EAI solutions to im-
plement private business processes are Workflow Manage-
ment Systems (WfMSs) [22]. As mentioned above WfMSs
used for EAI have to allow both the definition of workflow
types and the execution of workflow instances. Traditional
SOA implementations in the EAI domain apply to a grow-
ing extent XML based Business Process Modelling Stan-
dards like BPEL [1], WSCI [2], BPSS [10] etc. Microsoft
BizTalk is a prominent SOA incorporating one of these stan-
dards, namely BPEL. BPEL clearly separates private and
public process models. It introduces the concept of exe-
cutable process for private processes and abstract process for
public processes.

If it is possible at all to model the public processes, this def-
inition is not executable, regardless of what standard is cho-
sen in the process layer. One has to incorporate the public

process in the execution of its private process [6]. The behav-
iour of the public process of two services exposed by differ-
ent companies have to match to establish a communication.
This leads to the necessity to define one process model for
every partner the organisation is conducting business with.

An alternative approach is to model the executable private
process separately from the executable public process and
define binding to relate both [6]. However, WfMS used within
SOA does not have the concepts of dynamic binding of pub-
lic and private processes. As Bussler [6] describes, WfMS
assume that workflow instances execute in isolation. Two
top level workflow instances (in this case the private and the
public process) can not be related by current WfMSs since
no modelling concepts are available for this functionality.

Transformation Layer

Since SOA based on Web Services use XML as their way of
defining the data structure of messages, transformation does
not have to deal with mismatches between e.g. hierarchical
structures or fixed-length fields. However in XML the same
data item may be modelled as an attribute of an existing ele-
ment in one document and as a subelement in another XML
representation.

In current SOA document transformation becomes a func-
tionally exposed mapping subprocess. Since current stan-
dards like XML and XML Schema only solve the mismatch
on the syntactical and structural level; solving the mismatch
on the semantic level is usually handled on a case-by-case
basis. If, for example, two services use RosettaNet as their
data structure, both trading partners have to transform Roset-
taNet to whatever internal data structures they use. Trans-
formation maps are used to process and convert the content
and structure of any source information based on its XML
schema representation into any target document format [45].
This solution requires a mapping between every two different
XML schemas before an interaction between the respective
Web Services can be set up. A widely used standard protocol
for creating and saving this mappings is XSLT.

Transportation Layer

SOAP as the protocol used for exchanging structured infor-
mation in a Web Service enabled SOA can be used with a
variety of transport protocols such as HTTP, SMTP, and FTP.

SOA applying Web Services assumes a WSDL compliant
interface of the participating applications. If the applica-
tion does not natively support a WSDL interface, adapters
are used to transform external events into messages and vice
versa.

Both the transport protocol and the adapter integration is not
further discussed.

3. SWS AS FOUNDATION FOR EAI
As mentioned above although traditional Web Services can sim-

plify a SOA drastically, the technologies are exclusively syntactical
that lack the consideration of semantics. In the following we show
a simple artificial Web Service, which allows the user to register a
child with the Austrian record section. Figure 2 shows how the re-
spective WSDL description could look like. It is evident that only
humans can interpret the meaning of e.g. ”hasBirthdate” and what
the allowed vocabulary for the String ”hasBirthplace” would be.

With the use of Semantic Web markup languages data structures
passed through Web Service interfaces are expressed in ontologies

<?xml version=”1.0” encoding=”UTF−8”?>

<!−− Namespace Defintion−−> [...]

<message name=”ChildInput”>
<part name=”hasBirthdate” type=”xsd:date”/>
<part name=”hasBirthplace” type=”xsd: string ”/>

</message>
<message name=”CitizenshipRespone”>

<part name=”hasCitizenship” type=”xsd: string ”/>
</message>

<portType name=”CitizenshipPortType”>
<operation name=”GetCitizenship”>

<input message=”tns:ChildInput”/>
<output message=”tns:CitizenshipRespone”/>

</operation>
</portType>

<!−− Binding Definition−−> [...]

Figure 2: Example WSDL service description

createing a distributed knowledge base. It becomes a lot easier to
comprehend what the service actually can be used for. This pro-
vides the means for agents to reason about the web service descrip-
tion and to perform automatic Web service discovery and execu-
tion [32]. In the following we describe the Web Service Model-
ing Ontology (WSMO) and how the same service described in fig-
ure 2 could be expressed in the Web Service Modeling Language
(WSML).

3.1 WSMO, a SWS Framework
WSMO [42] is a formal ontology for describing various aspects

related to Semantic Web Services. WSMO is based on the Web Ser-
vice Modeling Framework [18]. The objective of WSMO and its
surrounding efforts is to define a coherent technology for Seman-
tic Web Services [32] by providing the means for semi-automated
discovery, composition and execution of Web Services which are
based on logical inference-mechanisms. WSMO applies WSML
[16] as the underlying language based on different logical formalisms.
WSMO defines four main modelling elements for describing sev-
eral aspects of SWS [42]:

• Ontologies:They represent the key element in WSMO, firstly
to define the information’s formal semantics and secondly to
link machine and human terminologies (see figure 3 which
shows a section of a sample ontology used for the capability
description below). WSMO ontologies give meaning to the
other elements (Web Services, goals and mediators), and pro-
vide common semantics, understandable by all the involved
entities (both humans and machines).

• Goals: Goals represent the objectives of the service requester
to be fulfilled when consulting a Web Service. They provide
the means to express a high level description of a concrete
task. A goal can import existing ontologies to make use of
concepts and relations defined elsewhere, either extending or
simply reusing them.

The advantage of using goals is that requesters only have to
provide a declarative specification of what they want. It is
not necessary for them to have a prior knowledge of the Web
Service or to browse through a UDDI registry to find services
providing the appropriate functionality.

ontology
<!−− Non Functional Properties Definition−−> [...]
<!−− Used Mediators Definition−−> [...]
<!−− Imported Ontologies Definition−−> [...]

conceptHuman
nonFunctionalProperties
dc# descriptionhasValue”conceptof a human being”

endNonFunctionalProperties
hasName ofType foaf#name
hasParent inverseOf (hasChild) impliesType Human
hasChild impliesType Human
hasAncestor transitive impliesType Human
hasWeight ofType (1) xsd#decimal
hasWeightInKG ofType (1) xsd#decimal
hasBirthdate ofType (1) xsd#date
hasObit ofType (0 1) xsd#date
hasBirthplace ofType (1) loc# location
isMarriedTo symmetric impliesType (0 1) Human
hasCitizenship ofType oo#country

conceptChild subConceptOf Human
nonFunctionalProperties
dc# relation hasValue{ChildDef, ValidChild}

endNonFunctionalProperties

axiom ChildDef
NonFunctionalProperties
dc# descriptionhasValue”Human being not older than 12

(the concrete age is an arbitrary choice)”
endNonFunctionalProperties
definedBy

forall ?x (
?x memberOf Humanand
?x[hasAgeInYearshasValue?age]and ?age=<12
implies ?xmemberOf Child).

[...]

Figure 3: Example WSMO ontology definition (cp. [18] for the
whole ontology)

• Web Services: Similar to the way requester declare their
goals, every Web Service capability has to be declared (see
figure 4 for a sample capability description expressing the
same functionality as the WSDL listing above). Additionally
the interface, used mediators and non functional properties
have to be defined.

Only if the service requester and provider use the same ontol-
ogy in their respective service description the matching be-
tween the goal and the capability can be directly established.
Unfortunately, in most cases the ontologies will differ and
the equivalence between a goal and a capability can only be
determined if a third party is consulted for determining the
similarities between the two ontologies. For this, WSMO
introduces another modelling element: the mediators.

• Mediators: The current specification contains four different
types of mediators: ooMediators, ggMediators, wwMedia-
tors and wgMediators. The ooMediators have the role of re-
solving possible representation mismatches between ontolo-
gies. The ggMediators have the role of linking two goals.
This link represents the refinement of a source goal into a
target goal. If two goals are equivalent, then a Web Service
that can satisfy one of them can satisfy the other one as well.
The wgMediators link Web Services to goals, meaning that
the Web Service can fulfill the goal to which it is linked. The

webService ”http :// example.org/ BirthRegistrationAustria ”
<!−− Non Functional Properties Definition−−> [...]
<!−− Used Mediators Definition−−> [...]
<!−− Imported Ontologies Definition−−> [...]

capability
precondition

nonFunctionalProperties
dc# descriptionhasValue”The input has to be boyor a girl

with birthdate in the pastand the birthplace Austria .”
endNonFunctionalProperties
definedBy

(? child memberOf Child)
and ?child [hasBirthdatehasValue? birthdate]
and wsml#dateLessThan(?birthdate,wsml#currentDate())
and ((? child [hasBirthplacehasValue? location]
and ? location [locatedInhasValueloc#at])).

assumption
nonFunctionalProperties

dc# descriptionhasValue”The child is not dead”
endNonFunctionalProperties
definedBy

(? child memberOf Child)
and neg(exists ?x (? child [hasObithasValue?x])).

effect
nonFunctionalProperties

dc# descriptionhasValue”After the registration the child
is an Austrian citizen ”

endNonFunctionalProperties
definedBy

?child memberOf Child
and ?child [hasCitizenshiphasValueloc#at]

<!−− Interface Definition−−> [...]

Figure 4: Example WSMO capability description

wwMediators are used for linking two Web Services in the
context of automatic composition of Web Services.

3.2 Towards a semantically enriched SOA
We apply the framework proposed by the Web Service Mod-

elling Ontology (WSMO) to the concept of a SOA and call this
new type of architecture Semantic Service-Oriented Architecture
(SSOA). This SSOA takes the Conceptual Semantic Web Service
architecture of Fensel/Bussler [18] and Preist [40] as an input. Hence
the aim of this paper is not to design yet another Semantic Web Ser-
vice architecture, but to show how one kind of such an architecture
performs in the EAI domain.

By semantically enriching a SOA we have to redefine the three
main concepts of the SOA (see section 2.2) in the following way.

• Service provider They can still use WSDL as a universally
accepted interface language, but additionally they have to
provide a WSMO compliant service description (see section
3.1). By doing so they allow a requester to discover the ser-
vice based on a formally defined goal instead of searching
through the directory service and selecting the appropriate
service.

• Service registryThe functionality of the service registry re-
mains the same. The only difference is that it stores WSML
service descriptions instead of WSDL.

• Service requesterService requesters have to publish the de-
sired functionality as a WSMO goal. In case of a SSOA the

requester can also be an agent requiring one of a class of ab-
stract service. If so the requesting agent has to have its own
interface defined in WSML (to allow WSMX to mediate be-
tween possible differences in the message exchange patterns
of the requester and provider).

We adopt in the following the Business-to-Business E-Commerce
lifecycle model defined in [47] to help us understand the activities
to be considered to discover and invoke a service in a SSOA. Since
the third aspect, the Publish operation (see section 2.2) has to hap-
pen at design time, it is not included in this lifecycle denoting the
dynamic character of a SSOA.

1. Matchmaking: The first activity in the matchmaking phase
is the Web Service Discovery. It deals with the matching of
formalised goals and formalised Web Service descriptions.
In this step it has to be proven that the capability logically
entails the goal with the premise that the conditions for suc-
cessful usage of the Web Service are fulfilled [48]. The no-
tion of matching goals to services is similar to component
matchmaking, cf. [30, 37]. The matchmaking includes the
following three subactivities:

• Ontology Mediation: To be able to match Web Service
descriptions with goals defined in a different ontology,
ontology mediators are called if available to resolve
possible differences.

• Handling Partial Matches: Goal-Capability matching is
only successful, if the goal and the Web Service ca-
pability match perfectly. This does not hold for many
cases, as there might be semantic differences between
the goal and the capability. Nevertheless a Web Service
might be usable for solving a goal even if some part of
the goal is in conflict with the service description ex-
amined. Several degrees of matches can be considered,
each varying in the degree of satisfaction of the user’s
goal. Colucci et al present an approach how to calculate
the degree of this partial matches in [12].

• Service discovery [48] uses the Web Services matched
in the previous step to access the real services behind
such Web Service interfaces, finally checking what ser-
vices fulfill the requester’s goal. The Web Service Dis-
covery results in an agreed service [40] defining what
services of interest to the requester the provider can of-
fer. The difference between the aforementioned Web
Service discovery and the Service Discovery can be
easiest described with an example. Web Service dis-
covery is to find a Web Service that can be used to e.g.
purchase automotive parts whereas service discovery is
about checking whether the actual Web Services can
really provide the concrete requested part.

2. Filtering results: The outcome of the previous phase is a set
of suitable Web Services. In order to improve the quality
of the result set and to ultimately choose one, additional fil-
ter mechanism can be applied in the selection. They can be
based on non-functional properties of Web Services or take
some service requesters preferences into account.

3. Agreement Negotiation: After selecting a Web Service two
parties need to determine if they can agree on a service which
the provider will supply to the requester. The agents enter
into negotiation with each other, to see if they can agree mu-
tually acceptable terms of business.

Figure 5: SSOA lifecycle model

4. Contract Agreement: The outcome of this phase is a legally
binding contract, specifying the terms that both parties con-
sider acceptable.

5. Service Delivery: The agents carry out the agreed transac-
tion, within the parameters specified in the contract. The ser-
vice delivery contains a post-agreement choreography which
includes the following activities [40]:

• Delivery Choreography: This governs the actual mes-
sage exchange pattern which controls the execution of
one or more tasks within the service delivery. If the re-
quester’s and provider’s communication patterns differ,
behaviour mediation would try to resolve them at this
stage of the lifecycle.

• Monitoring Choreography: This does not directly con-
trol or influence the delivery choreography itself, but it
allows the requester to monitor its state. For example it
would allow the requester agent to obtain the delivery
status of a purchase.

• Cancellation/Renegotiation Choreography: This Chore-
ography defines if a cancellation or alteration of a ser-
vice is allowed and within which circumstances.

3.3 How SSOA overcomes limitations of tra-
ditional SOA

Process Layer

As mentioned above different services require different mes-
sage exchange patterns (i.e. which interface has to be in-
voked when) in order to achieve a consistent state transition
within the service. The problem to solve is that two different
services might provide different interfaces (public process)
for the semantical same operation [8]. If you take an exam-
ple of purchasing a book, one system might offer it with one
single invocation whereas the other system requires first the
creation of a user, followed by activation of the user and fi-
nally the purchase of the book. Hence in the first case, one

invocation completely defines a user whereas in the second
case several interface invocations are necessary to achieve
the same functionality. More important than the mere invo-
cation is its specific execution order: Activation of the cus-
tomer cannot be before the user is actually created. This dif-
ference in the public processes can cause heterogeneity after
successful discovery of a Web Service within a SOA. In order
to invoke the Service the two parties must be able to redefine
their communication patterns or to use an external media-
tion system as part of the process. The first solution implies
changes in the requester’s or providers business logic (private
processes) and hinders a dynamic invocation. Every partici-
pant would have to readjust its pattern for every invocation of
Web Services with heterogeneous communication patterns.

The second is done through an approach called process or be-
haviour mediation [18]. By applying SWS principles medi-
ator systems can compensate the clients communication pat-
tern or the Web Services communication pattern in order to
obtain equivalent public processes. The role of mediators is
to put together the necessary means for the runtime analyses
of two given instances of a public process and to compensate
the possible mismatches that may appear. For instance, to
generate dummy acknowledgement messages, to group sev-
eral messages in a single one, to change their order or even to
remove some of the messages in order to facilitate the com-
munication between the two parties.

Transformation Layer

Although ontologies are used as a shared conceptualizations
of the same problem domain within SWS it will always be
the case that there are ontologies for the same domain cre-
ated by different entities around the world. In such a case
where services use dissimilar ontologies the EAI solution
has to provide the means to transform between them. This
semantic transformation is also called mediation [18]. Medi-
ation ensures that the semantics of the involved concepts are
preserved.

Similar to the transformation in traditional EAI solutions it
is still impossible for a mapping tool applied on ontologies
to automatically generate these mapping rules. Some of the
best results of research projects in this area are mapping tools
that are able to validate or to suggest possible mappings, but
at some point in the mapping process, domain expert inter-
vention still remains a necessity [34]. However the main
difference is that the mediation takes place at the level of
ontologies rather than on the XML Schema level as with tra-
ditional transformation. Precisely this entails that for every
two different XML Schemas mapping rules have to be de-
fined whereas for two messages using different ontologies
only a mediator (mapping) between the two ontologies have
to be in place. This sounds similar in the first place, but XML
Schemas are defined for every message, ontologies on the
other hand define a greater domain. Furthermore the map-
pings between two different ontologies can be discovered
and reused at runtime, whereas XML Schema mappings have
to be bound at design time.

Similar to the mapping between different Schema represen-
tations of XML messages (e.g. between DTD and XML
Schema), ontology mediation has to be applied to the con-
ceptual model of the involved ontology representations as
well (e.g. between WSMO language variants and OWL-
S language variants) [34]. However, these transformation
problem is of restricted nature since the set of available on-
tology representation languages is limited.

3.4 Prerequisites of SWS in inter-EAI
As explained above SWS principles enable to dynamically dis-

cover and invoke services within a SOA. Furthermore they facilitate
the functional requirements within EAI on any necessary mediation
based on data and process ontologies and on-the-fly translation of
their concepts into each other.

However, despite the conceptual advantages SWS technology of-
fers for EAI scenarios, due to the infancy of the frameworks itself,
work in the following fields have to advance in order to be capable
to achieve the ultimate goal of on-demand consumption of services.
In the following we describe the challenges associated with the in-
dividual activities in the above defined lifecycle model.

Matchmaking

Non-functional properties

In Business-to-Business (B2B) scenarios it is of utmost im-
portance that a provided service is legally binding once it is
invoked. This is achieved in traditional B2B integration sce-
narios via Service Level Agreements (SLAs). A SLA con-
stitutes a contract between a service provider and requester
specifying the level of service that is expected during its term
[28]. They can specify availability (refers to the temporal and
locative properties when a service can be requested or pro-
vided), response times, rights and economic compensation
if the invocation of the service fails or the actual real world
service is not conducted, etc.

It is important to note that the provider’s formal service de-
scription represents an agreement about the Web Service func-
tionality, but it does not need to have any legal status. In the
case of dynamic discovery and invocation the above men-
tioned parameters of a SLA have to be included in the service
description in order to be accounted for in the Matchmaking
phase.

O’Sullivan et al [36] define the notion of obligations in a re-
cent technical report in order to capture the responsibilities of
both the service provider and service requester. By defining
non-functional properties they are available in the filtering
phase to resolve the result set to the services compliant to
the defined obligations. For example, a service provider may
wish to advertise that service requesters have an obligation
for a relationship if they request their service.

These obligations to define a SLA are currently not addressed
in the SWS frameworks and it remains a challenge to incor-
porate support for richer non-functional properties to reflect
constraints on properties such as payment, availability, rights
and economic compensation.

Ontologies for Business Documents

Messages in B2B interaction are sophisticated pieces of in-
formation and several organizations tried to standardize com-
mon business documents like purchase orders etc. These
standards are called B2B protocol standards [5]. A B2B pro-
tocol standard in general is not only the description of the
message formats exchanged (e.g. purchase order), but also
properties like bindings to transport protocols, the sequenc-
ing, the security and many more.

The most well-known standards in regard to the message for-
mat are EDI5 and SWIFT6. They not only provide a defined
syntax but also a defined vocabulary for values of the mes-
sage fields. However these standards are not applicable in
SOA. They are neither XML based, nor is it easy to set up
an EDI or SWIFT compliant interaction. Since these stan-
dards maintained great flexibility in defining the involved
messages, it requires the two parties to agree on interaction
protocols and message formats.

RosettaNet7, ebXML8, OAGIS9 and many others are indus-
trial consortiums which aim to ease this process by using
XML and XML Schema technologies to define standardised
syntax of messages. They also constitutes the standards sup-
ported in traditional Web Service enabled SOA. Again, some
of these standards are merely defining the message format
others are defining the transport protocol, the sequencing,
etc. By using one of these standards, organisations do not
need to go through an agreement phase to specify the used
vocabulary for values of the message fields. Instead it is suf-
ficient to agree on what standard to use. However, these stan-
dards have necessarily maintained some flexibility in defin-
ing the message format. Since they are syntactic, rather than
semantic it can not be checked in the discovery of a service
if the expected message format is compliant to the provided
message format.

By applying ontologies in describing business documents in
a SSOA the matchmaking becomes possible even if two mes-
sages differ in the used concepts and attributes. As men-
tioned above, mediation is necessary if different ontologies
are used. The challenge for SWS frameworks is to set up or
initiate standard ontologies for business documents. As long
as every service requester or provider is using its own con-
ceptualisation of the same domain a matchmaking between

5see http://www.x12.org
6see http://www.swift.com
7see http://www.rosettanet.org
8see http://www.ebxml.org
9see http://www.openapplications.org

the goal and the service description is difficult or even im-
possible. Proposals for ontologizing business documents are
made in the recent past [19], but an agreement over such on-
tologies have to be achieved over vertical markets.

Policies as logical conditions

Since most B2B integration applications have fundamental
requirements around security and reliability as a kind of min-
imum criterion for adoption, most add on standards for the
Web Service Stack were positioned around security and reli-
ability. These Standards have reached a relative mature status
and are already implemented in some Web Service integra-
tion platforms [35].

Since participating entities in a Web Service interaction rely
on the ability for message processing intermediaries, tradi-
tional point-to-point security mechanisms using a secure trans-
port (e.g. SSL/TLS) are not applicable [35]. Specifically, the
SOAP message model operates on logical endpoints that ab-
stract from the physical network and application infrastruc-
ture and therefore frequently incorporates a multi-hop topol-
ogy with intermediate actors.

The proposed Web Service security standards provide a mech-
anism for end-to-end security. The WS-Security [3] standard
defines among other things how to attach and include secu-
rity tokens within SOAP messages. The requester’s security
token can either be directly known and trusted by the service
provider or either the requester or provider obtain the secu-
rity token from a third party token store service and validate
the proof. Inherent with the first solution is that it assumes
that the two parties have used some mechanism to establish
a trust relationship for use of the security token beforehand.
The latter case demands either the requester or the provider
to obtain the security token before being able to invoke the
Web Service.

Defining policies regarding reliable and secure messaging is
the focus of the WS-Policy [4] specification which includes
alongside the security token requirements, privacy attributes,
encoding formats and supported algorithms.

Since there are already proposals how to align WSMO with
WS-Policy [25] it can be expected that Semantic Web Ser-
vices will ultimately represent such policy assertions as log-
ical conditions. However this is not achieved yet and there-
fore security constraints can neither be expressed in the goal
nor in the service description.

Negotiation

Negotiation templates

The negotiation stage of the E-Commerce interaction lifecy-
cle refines the agreed service specification from the match-
making phase to a concrete agreement between two parties
[47].

From a business point of view, negotiation is a key factor or-
ganisations use for achieving cost reduction in E-Commerce
[27]. Automated negotiation in current B2B protocol stan-
dards is only addressed in a limited way. OASIS, the stan-
dardisation body of ebXML is working on requirements for
automated negotiation processes to compose/negotiate a Col-
laboration Protocol Agreement (CPA) from the Collabora-
tion Protocol Profiles (CPPs) of two prospective trading part-
ners [44]. It is not yet defined as a standard and there are no
services available offering such kind of negotiation protocol.

Only if two partners agree on negotiation protocols based on
the same XML template, this process can be automated in the
filtering phase. Furthermore without ontologies it can not be
guaranteed that the requester and the provider are referring
to the same good.

SWS frameworks have to propose negotiation templates in
order to be able to match the protocol supported by the ser-
vice requester with those used by the service provider. Nego-
tiation templates refer to a common ontology accepted by all
participants in the negotiation [47]. They define a schema
for valid negotiation proposals that participants submit to
each other. The result of the negotiation process is an agree-
ment on the terms which have been relaxed to negotiation.
In most cases the price based on the quantity, delivery time,
warranties etc. will be subject to negotiation.

Delivery Choreography

Standards and mappings for Public Processes

As presented in section 3.3 in SWS frameworks mediator
systems can compensate between differences in the clients
communication pattern and the Web Services communica-
tion pattern in order to obtain equivalent public processes.
Although this is possible in theory only if the two public
processes are compliant to some standard or at least the con-
cepts describing the states of the process (the business docu-
ment standards described above) it is possible to achieve the
mediation by applying solvable mismatch rules in the ser-
vice delivery without any human intervention. If two public
processes are heterogeneous to a degree where differences
can not be mediated by ”intelligent” mediators, transition
rules have to be defined at design time. They are subse-
quently used to identify the equivalences between the two
processes which are then applied at run time on the par-
ticular process instances. Since the partners in a dynamic
environment are not known beforehand standardised public
process ontologies similar to the B2B protocol initiative pro-
posal have to be included in the SWS frameworks in order to
limit the mediators necessary for resolving process hetero-
geneity.

3.5 Prerequisites of SWS in intra-EAI
We have shown the benefits of SWS in EAI scenarios in section

3.3; now we have to call the application of SWS to intra-EAI into
question. One could claim that heterogeneous business logics and
data formats are not present within a company? Furthermore some
might state that a Service Discovery is not required, since the func-
tionality exposed by different applications within the organisations
boundaries is known to system architects at design time?

First one has to consider that an arbitrarily large organisation
consists of a series of sub units, which are set up to deal with the
various problems the firm needs to solve to continue existing [41].
These sub units (departments, divisions, etc.) require inputs of one
kind or another to do their job.

Organisational and behavioural psychologists have looked into
the reasons why sub units do not discover services automatically
from within rather than without the organisation. Cyert and March
[15] developed the concept of a loose and shifting ”coalition” that
selects organisational goals. Organisational subunits are assumed
to be independent and to deal incrementally and disjointedly with
one problem and one goal at a time while being subjected to short-
run reactions and to short-run feedbacks on their actions. Over
time, as sub units repeatedly alter their goals and relationships to

local environments, the organisation becomes transformed. This
leaves little room for the discovery of new services in other, pos-
sibly unheard, areas of the existing organisation. Hence dynamic
discovery within an organisation can be as beneficial as it is be-
tween organisations in B2B E-Commerce.

To be able to discover these services in other sub units the same
extensions to the traditional SOA (see section 3.2) have to be made.

This implies that we have to examine if the challenges on SWS
frameworks to enable a dynamic environment for inter-EAI as de-
scribed in the previous paragraph apply for intra-EAI as well.

Matchmaking

Non-functional properties

Since every organisation consist of a limited amount of sub
units, these units itself are known to each other and as they
conduct business on a daily basis, organisational agreements
[39] replace Service Level Agreements (SLAs) in the usage
of services. When interests of the business-units and the cor-
poration are aligned, sub unit managers will be motivated
to pursue synergies with their sister sub units. It has value-
creating potential [39], hence it can be assumed that service
usage between sub units is agreed on beforehand.

Only properties related to the availability of single services
remain an issue in intra-EAI as well. An organisational wide
policy on how to conceptualise these properties can help to
include them in the Matchmaking. Another possibility is a
monitoring of services within an organisation, whereas every
sub unit has access to the metrics to have preferences defined
in the filtering phase based on this evaluation metrics.

Ontologies for Business Documents

In fact the existence of ontologies to define the business con-
tent (the vocabulary) of messages involved in the interaction
between two services remain an issue in intra-EAI as well.
One possible solution is again an organisation wide policy
on how to conceptualise the relevant domains attached to the
messages exchanged within the organisation.

As semantically annotated Web Service interface have to be
developed in any case, it is sufficient if this development
is coordinated on a strategic level throughout the organisa-
tion. In this way an agreement can be enforced rather than
be achieved by a mutual agreement between different busi-
ness partners on a standard in vertical markets as it is the case
in inter-EAI.

Policies as logical conditions

Defining WS-Security Policies in logical terms to place con-
straints on the chosen services is usually not an issue within
organisations. Communication between sub units is either
over secure ethernet or over a Virtual Private Network (VPN)
applying for example traditional transport-layer security mech-
anisms, such as SSL (Secure Sockets Layer) or TLS (Trans-
port Layer Security). Therefore the security, non-repudiation,
confidentiality and integrity of message is guaranteed for mes-
sage transfer between Web Service as it is for every other
communication within an organisation’s network.

Negotiation

Negotiation templates

Within organisations the filtering of a result set derived in the
Matchmaking is based on the functionality of the service and

preferences rather than based on negotiation over the price.
Sub units will endeavour to share tangible and intangible re-
sources between business-units to lower joint costs of pro-
duction (Economies of scope) [23]. Price is merely used for
cost accounting purposes and negotiations over the price are
not undertaken.

This implies for the filtering that either simply the service
with the lowest price (if the functionalities of the discovered
services match exactly) or the service with the highest de-
gree of match calculated in the Matchmaking phase will be
chosen.

Delivery Choreography

Standards and mappings for Public Processes

This is directly related to the ontologies for business docu-
ments. Again as long as an agreed set of ontologies is used
within a company, only a limited set of mediators is required
to mediate between behavioural heterogeneities.

Now as we have shown that dynamic discovery and invocation
by applying current SWS frameworks is possible between organ-
isational sub units under certain circumstances, we show how the
Web Service Execution Environment (WMSX) can be applied in a
concrete use case.

4. WSMX IN EAI
WSMX as a sample implementation for WSMO provides in its

first version implementations of all components constituting a SSOA
on different levels of maturity.

4.1 WSMX functionality and architecture
WSMX exposes its functionality as a Web Service by four oper-

ations [51]:

1. Store WSMO entity

This entry-point provides requesters and providers to store
Web Service descriptions and choreography interface descrip-
tions (public processes) as well as any WSMO-related entity
(like ontologies, goal templates etc.) to make them available
for public use.

2. One-way goal execution

The service requester expects WSMX to discover and invoke
the Web Service by providing a formal description of a goal
(see section 3.1) and a fragment instance of an ontology. This
scenario is comparable to a traditional Web Service invoca-
tion where the provider and its associated public process is
known to the requester beforehand. It remains in the respon-
sibility of the requester to provide permanent addressing to
pick up possible results by WSMX.

3. Web Service Discovery

A single Web Service based on the selection within WSMX
or a list of Web Services is provided when invoking this
operation for a given goal and an instance of an ontology.
Each Web Service description returned back is already me-
diated to the requester ontology if necessary. The required
exchange message patterns to invoke the Web Service (its
public process) is also provided in the result set.

Figure 6: Simplified WSMX Architecture cf. [47] for the complete picture

4. Two-way goal execution

Once the service requester knows what Web Service to use,
this operation is used to invoke the Web Service. The ad-
vantage over a traditional Web Service invocation is that a
back-and-forth conversation can be carried out by WSMX to
provide all the necessary data to make the execution of this
Web Service feasible. For that the choreography of the re-
questing Web Service (its public process) has to be known
to WSMX, either provided within the message or registered
before through the ”Store WSMO entity” operation.

What follows is a brief description of the WSMX components
relevant in this use case (see Figure 6). A detailed explanation of
all components can be found at [50].

• Message Adapters:As long as back end applications do not
natively support a WSML compliant Web Service Interface
adapters are required to transform the format of messages or
even extracted data from an API into the WSML compliant
format understood by WSMX.

• Resource Manager:This component is responsible for man-
aging the repositories to store definitions of any WSMO and
non-WSMO related object in WSMX. The service registry
can either be centralised or decentralised, whereas the cur-
rent architecture only deals with a decentralised repository
in each WSMX.

• Discovery: The Discovery component attempts to match the
service requester’s goal to a capability stored in any known
repository. The functionality corresponds to the dynamic dis-
covery described in section 3.2.

• Selector: It provides a dynamic selection of the discovered
Web Services in the Matchmaking process. The selection is
currently based on a limited set of non-functional properties.

• Data Mediator: The task of this component is to transform
the incoming data from the terms of the requester’s concep-
tualisation (source ontology) in terms of the providers’s con-
ceptualisation (target ontology). Data mediation is based on
paradigms of ontology management, ontology mapping and
aligning in particular.

• Process Mediator: The role of the Process Mediator is to
put together the necessary means for the runtime analyses
of two given choreography instances and to compensate the
possible mismatches that may appear (see section 3.3).

• Communication Manager: It has two major tasks: first,
to handle the various invocations that may come from re-
questers and second, to invoke Web Services and to retrieve
the results of these invocations back to WSMX. Currently,
even if a semantic description is provided for a certain Web
Service capability, the actual invocation still has to be made
in a classical way, by representing all the data needed for the
invocation in the required XML format. In order to make
the bridge between the semantic descriptions used within
WSMX and the classical syntactic Web Service descriptions,
WSMX provides the necessary means for lifting non-semantic
descriptions (e.g. XML messages and XML schemas) to a
semantic level and to lower the elements semantically de-
scribed (e.g. ontology instances and concepts) to the level
required by the classical approaches.

4.2 Use Case - WSMX in intra-EAI
First we define some prerequisites on the architecture itself in or-

der to depict a high-level intra-EAI use case. To keep the use case
as general as possible, we do not assume WSMX to be installed
either on the requester or the provider side. Since WSMX exposes
all its functionality itself as a Web Service, it acts in the use case
as any other component exposed as a Web Service. The only dif-
ference is that the requesting agent has to be bound to the WSMX

Web Service at design time, since it performs the discovery of SWS
and therefore can not discover itself.

However, it is of no relevance where the WSMX systems phys-
ically resides. Since it is more likely that one sub unit publishes
the service description of functionality they would like to expose
for reuse in their own WSMX repository, we can expect several
WSMX systems installed in the organisation. This would not hin-
der the discovery of service descriptions stored in different WSMX
systems as long as they are known to each other. Therefore we as-
sume that the service providers have already registered their Web
Service in at least one internally operated WSMX repository. Fur-
ther the service requesters also have their public process registered
with any WSMX. If they are stored in two different systems we as-
sume that the two WSMX repositories are known to each other and
a physical connection is available.

The following use case describes the execution semantics of WSMX
in a concrete scenario and shows how sub units are able to dynami-
cally discover and invoke services within the organization’s bound-
aries. The operational flow of the discover and invoice operation
are depicted in figure 7.

Figure 7: Simplified Operational Aspects of WSMX

Let us assume a stock purchase by an investment fund depart-
ment within a multinational operating bank. This division, which
we will further call HFD (hedge fund division), manages a global
hedge fund. Within its business it has to buy all kind of certifi-
cates from different markets. Typically purchases of certificates on
different markets are managed by so called settlement divisions.
In large-scale banks there might not be only one settlement, but
several ones in different countries with overlapping functionality.
Similarly different funds are managed in different departments, ei-
ther by outsourced sub companies or independent entities within
the bank. The HFD now wants to buy one million shares of the

Bridgestone Co., listed on the NIKKEI index and traded at the
Tokyo Stock Exchange (TSE), by using settlement services avail-
able somewhere within the bank. The proprietary application man-
aging the portfolio of the HFD was configured in a way that it au-
tomatically orders one million shares of the Bridgestone Co. if the
share price drops below 12 Yen.

Leveraging a SSOA the application (service requester) sends the
goal to buy one million Bridgestone shares at the current market
price at the TSE to the WSMX Discover operation (see section 4).
When invoking this operation the application defines in the prefer-
ences attribute if a set of Web Services or a selected Web Service
based on non-functional properties is desired. If this application
does not support a Web Service interface, adapters have to provide
the connectivity in the SSOA.

WSMX tries to find matching Web Service capabilities based on
different levels of logical reasoning (see section 3.2). If WSMX is
not used on a global level within the organisation and the two sub
units use different WSMX systems the actual result set will also
contain service descriptions stored in the WSMX repository used
by the settlement division to publish their service description.

If the HFD and the settlement division use dissimilar ontolo-
gies to describe their goal and their service description the medi-
ator component can compensate the semantic mismatch of the two
descriptions in the Discovery phase. As we mentioned above we
assume that a limited set of ontologies is used within the organisa-
tion and the necessary mediators are in place.

If the result of the Matchmaking was a set of Web Services and a
WSMX internal selection is not desired, the requesting application
has to select the actual Web Service to invoke. As we mentioned
above in intra-EAI this selection can in most cases be based on the
degree of functionality match since non-functional properties like
the price are not an issue.

Now the requesting application calls the two-way goal execution
operation of WSMX to finally invoke the selected Web Service.
Included in the message sent to the WSMX server is the actual on-
tology instance data (e.g. the share name, the amount of shares
etc.) and the choreography interface (public process) or a URI ref-
erence to its stored definition. In the most likely case that the re-
quester’s and provider’s communication patterns are heterogeneous
the process mediator would resolve the mismatch and control the
back-and-forth of messages between the requester, WSMX and the
provider. Again we assume a limited set of ontologies with the re-
spective mediators available to allow a fully dynamic resolution of
process heterogeneity. The result of the invocation is the final state
in the communication pattern sent back by WSMX to the requester.
In our case it would probably be some acknowledgment when the
shares were bought and to which account they were credited to.

5. RELATED WORK
Since our architecture applies WSMO as the underlying SWS

framework, related work is separated into other SWS frameworks
and EAI systems based on the SOA paradigm.

Beginning with the latter (Web Service enabled SOAs) we have
to identify a number of commercial applications. Among these
systems are IBM WebSphere MQ10, IONA Artix 11, webMethods
Fabric 12, BEA WebLogic Enterprise Platform13 and others. All
these products have in common that they do not facilitate seman-
tic annotation of the published services. They either rely on UDDI

10see http://www-306.ibm.com/software/integration/wmq/
11see http://www.iona.com/products/artix/
12see http://www.webmethods.com/meta/default/folder/0000006124
13see http://www.bea.com/

for service registry or they utilise CORBA Trading Service [33].
Latter complements the meta-database which is used by an Object
Request Broker (ORB) and the Naming Service. Again the discov-
ery service acts like yellow pages with merely syntactical search
functionalities.

Beside WSMO there are two other frameworks providing the
semantic mark-up for automated service discovery; OWL-S (for-
merly DAML-S) [46] and METEOR-S [38] and a third research
project called IRS3 [17] working on a SWS execution environment.

OWL-S [46] is an OWL-based Web Service ontology. For OWL-
S only separate tools are available such as a composer, a match-
maker and an editor. A complete toolset for design- and runtime
is not yet available for download. A dynamic binding of Web Ser-
vices by augmenting the BPWS4J14 implementation of BPEL with
a semantic discovery service is described in [31]. Since the BPEL
specification itself restricts the description of service partners to
syntactic WSDL ’portType’ definitions, this solution builds upon a
Web Service that can discover service partners at runtime based on
their OWL-S descriptions. This discovery service is then bound to
a BPWS4J process at design time.

METEOR-S [49] works with existing Web Services technologies
and combines them with ideas from the Semantic Web to enable
Web Service discovery and composition. In contrast to WSMO
and OWL-S it does not introduce a new ontology language, but
currently uses DAML+OIL and RDF(S) to map WSDL message
types (inputs, outputs) and operations to concepts in domain on-
tologies. The main components of METEOR-S are an Abstract
Process Designer, a Semantic Publication and a Discovery Engine,
a Constraint Analyzer, and an Execution Environment. The Ab-
stract Process Designer allows a user to create the process model
by using BPEL constructs. The Semantic Publication and Discov-
ery Engine provides semantic matching based on subsumption and
property matching. The Constraint Analyzer dynamically selects
services from candidate services which are returned by the discov-
ery engine. The Execution Environment performs the binding of
services returned by the Constraint Analyzer and converts abstract
BPEL to executable BPEL.

A similar tool to WSMX is IRS3 [17], a Web Service execu-
tion environment compliant to WSMO. With the current version
of IRS3 a service provider can create a WSMO service descrip-
tion that can be published against their service on the IRS3 server.
Once the service description is available, a goal can be described in
WSMO and bound to the published Web Service description using
a mediator. This binding is still at design time, but the use of me-
diators to link goals and services removes the manual hard-wiring
required for standard Web Services.

6. CONCLUSION
In this paper we have proposed to extend the notion of Service-

Oriented Architectures by Semantic Web Services. We applied the
principles of the Web Service Modeling Ontology (WSMO) to this
new type of architecture (SSOA) and showed how EAI benefits by
it. WSMO as a formal ontology for describing various aspects re-
lated to Semantic Web Services applied in a SSOA eventually allow
dynamic discovery and invocation of services published in the ar-
chitecture.

Furthermore with interfaces formally defined in WSML integra-
tion for developers become a good deal easier. We have shown how
the functionality in the transformation and process layer is greatly
improved. Instead of mapping between XML Schemas as it is done
in traditional SOA, in our architecture mediation takes place at a

14see http://www.alphaworks.ibm.com/tech/bpws4j

higher level of ontologies, which greatly reduces the required map-
pings. By applying SWS principles in the process layer, mediator
systems can dynamically compensate the clients or the Web Ser-
vices communication pattern in order to obtain equivalent public
processes.

Since the automated discovery and execution of Web services is
not facilitated by a conceptual model alone we have identified some
challenges on SWS frameworks and standardisation efforts to be
further addressed to ultimately reach the goal of dynamic environ-
ments. These issues included to define standards for business doc-
ument ontologies, ontologies for expressing Service Level Agree-
ments, business rules and business goals, negotiation protocols and
finally policy assertions as logical conditions (security, reliability
etc.).

We concluded that dynamic discovery and invocation is already
possible in intra-EAI under certain assumptions. To showcase the
potentials of a SSOA we applied WSMX, as a first representative
of a SSOA, to an internal integration use case. Finally we described
how WSMX addresses the activities we defined in a lifecycle model
for a SSOA.

The authors are part of the WSMO and WSMX15 working group
and will mainly contribute to the further development of the chore-
ography and orchestration component. The challenges mentioned
in this document are not unknown to the WSMO working group
and are addressed in different initiatives. Currently work begun
on extending non-functional properties. As already mentioned an-
other initiative is to ontologize EDI [19] and work on policies is on
its way.

7. REFERENCES
[1] T. Andrews et al. Business Process Execution Language for

Web Services, Version 1.1.
ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf , 2003.

[2] A. Arkin et al. Web Service Choreography Interface (WSCI)
1.0. W3C Note,http://www.w3.org/TR/wsci/ ,
2002.

[3] B. Atkinson et al. WS-Security.
http://www-106.ibm.com/developerworks/
webservices/library/ws-secure/ , 2002.

[4] S. Bajaj et al. Web Services Policy Framework (WS-Policy).
http://www-128.ibm.com/developerworks/
library/specification/ws-polfram/ , 2004.

[5] C. Bussler. B2B Protocal Standards and their Role in
Semantic B2B Integration Engines.IEEE Data Engineering
Bulletin, 24(1):3–11, 2001.

[6] C. Bussler. The Role of B2B Protocols in Inter-Enterprise
Process Execution. InProc. of Technologies for E-Services
(TES), 2001.

[7] C. Bussler.B2B Integration. Springer-Verlag, 2003.
[8] C. Bussler. The Role of Semantic Web Technology in

Enterprise Application Integration.IEEE Data Engineering
Bulletin, 26(4):62–68, 2003.

[9] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1.http://www.w3.org/TR/wsdl , 2001.

[10] J. Clark et al. ebXML Business Process Specification
Schema 5, Version 1.01, 2001.

[11] L. Clement, A. Hately, C. v. Riegen, T. Rogers, et al. UDDI
Version 3.0.2.
http://uddi.org/pubs/uddi v3.htm , 2004.

15WSMX working group - http://www.wsmx.org

[12] S. Colucci, T. D. Noia, E. D. Sciascio, F. Donini,
M. Mongiello, G. Piscitelli, and G. Rossi. An Agency for
Semantic-Based Automatic Discovery of Web-Services. In
Proc. of Artificial Intelligence Applications and Innovations
(AIAI), 2004.

[13] S. Craggs. Raising EAI Standards.
http://www.eaiindustry.org/docs/Raising%
20EAI%20standards.pdf , 2003.

[14] F. A. Cummins.Enterprise Integration: An Architecture for
Enterprise Application and Systems Integration. Wiley, 2002.

[15] R. M. Cyert and J. G. March.A behavioral theory of the firm.
Prentice-Hall, Englewood Cliffs, NJ, 1963.

[16] J. d. Bruijn. The WSML Specification. WSML Working
Draft, http://www.wsmo.org/TR/d16/ , 2005.

[17] J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and
E. Motta. IRS-III: A Platform and Infrastructure for Creating
WSMO-based Semantic Web Services. InProc. of the
Workshop on WSMO Implementations (WIW 2004), 2004.

[18] D. Fensel and C. Bussler. The Web Service Modeling
Framework WSMF.Electronic Commerce Research and
Applications, 1(2), 2002.

[19] D. Foxvog and C. Bussler. Ontologizing EDI: First Steps and
Experiences. Into appear in Proc. of the International
Workshop on Data Engineering Issues in E-Commerce
(DEEC), 2005.

[20] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen. Soap version 1.2.
http://www.w3.org/TR/soap12 , 2000.

[21] Integration Consortium. Thoughts from the EAI Consortium
Leaders: Avoiding EAI Disasters.http:
//www.dmreview.com/editorial/dmreview/
print \ action.cfm?articleId=8086 , 2004.

[22] S. Jablonski and C. Bussler.Workflow Management:
Modeling Concepts, Architecture and Implementation.
International Thomson Computer Press, 1996.

[23] R. W. J.C. Panzar. Economies of scope.American Economic
Review, 71(2):268–272, 1981.

[24] M. Keen et al.Patterns: Implementing an SOA Using an
Enterprise Service Bus. IBM Redbooks, 2004.

[25] J. Kopecḱy and D. Roman. Aligning WSMO and WSMX
with existing Web Services specifications. WSMO Working
Draft D24.1 v0.1,http://www.wsmo.org/2005/
d24/d24.1/v0.1/20050117/ , 2005.

[26] H. Kreger. Web Services Conceptual Architecture (WSCA
1.0).http://www-306.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf , 2001.

[27] M. Kumar and S. I. Feldman. Business Negotiations on the
Internet. InProc. of the Internet Society (INET), 1998.

[28] D. D. Lamanna, J. Skene, and W. Emmerich. SLAng: A
Language for Defining Service Level Agreements. InProc.
of the Ninth IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS), 2003.

[29] A. Laroia and L. Sayavedra. EAI Business Drivers.eAI
Journal, (2):27–29, 2003.

[30] L. Li and I. Horrocks. A Software Framework for
Matchmaking Based on Semantic Web Technology. InProc.
of the International Conf. on the World Wide Web, 2003.

[31] D. J. Mandell and S. A. McIlraith. Adapting BPEL4WS for
the Semantic Web: The Bottom-Up Approach to Web
Service Interoperation. InProc. of the International
Semantic Web Conference (ISWC), pages 227–241, 2003.

[32] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services.
In IEEE Intelligent Systems. Special Issue on the Semantic
Web., 16(2):46–53, 2001.

[33] B. Medjahed, B. Benattalah, A. Bouguettaya, A. Ngu, and
A. Elmagarmid. Business-to-business interactions: Issues
and enabling technologies.The VLDB Journal, 12(1):59–85,
2003.

[34] A. Mocan and E. Cimpian. Mediation. WSMX Working
Draft D13.3 v0.1,http://www.wsmo.org/2004/
d13/d13.3/v0.1/20040906/ , 2004.

[35] E. Newcomer and G. Lomow.Understanding SOA with Web
Services. International Thomson Computer Press, 2004.

[36] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede.
Formal description of non-functional service properties.
Technical report, CITI, 2005.

[37] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic Matching of Web Service Capabilities. InProc. of
the International Semantic Web Conference (ISWC), 2002.

[38] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Semantic
Web Services: Meteor-S Web Service Annotation
Framework. InProc. of the International Conference on
World Wide Web, pages 553 –562, 2004.

[39] C. Perrow.Complex organizations: a critical essay.
McGraw-Hill, 1986.

[40] C. Preist. A Conceptual Architecture for Semantic Web
Services. InProc. of the International Semantic Web
Conference (ISWC), 2004.

[41] S. W. R.H. Coase, O. Williamson.The Nature of the Firm.
Economica, University of Chicago Press, 1937/1991.

[42] D. Roman, H. Lausen, U. Keller, et al. Web Service
Modeling Ontology (WSMO). WSMO Final Draft,
http://www.wsmo.org/2004/d2/v1.0/ , 2004.

[43] W. A. Ruh, F. X. Maginnis, and W. J. Brown.Enterprise
Application Integration: A Wiley Tech Brief. Wiley, 2000.

[44] M. Sachs et al. Negotiation Requirements.http://www.
oasis-open.org/committees/download.php/
1577/Negotiation.req.06Mar02.pdf , 2002.

[45] D. Skeen. Business Vocabulary Management.Business
Integration Journal, (7):10–12, 2003.

[46] The OWL Services Coalition. OWL-S: Semantic Markup for
Web Services.http://www.daml.org/services/
owl-s/1.0/owl-s.pdf , 2004.

[47] D. Trastour, C. Bartolini, and C. Preist. Semantic Web
Support for the Business-to-Business E-Commerce
Pre-Contractual Lifecycle.Computer Networks: The
International Journal of Computer and Telecommunications
Networking, 42(5):661–673, 2003.

[48] U. Keller, R. Lara, A. Polleres. WSMO Discovery Engine.
WSMO Working Draft,http://www.wsmo.org/
2004/d5/d5.1/v0.1/20041112/ , 2004.

[49] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil,
S. Oundhakar, and J. Miller. METEOR-S WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication and
Discovery of Web Services.Journal of Information
Technology and Management, 6(1):17–39, 2005.

[50] M. Zaremba and M. Moran. WSMX Architecture. WSMX
Working Draft D13.4,
http://www.wsmo.org/2005/d13/d13.4/ , 2005.

[51] M. Zaremba and E. Oren. WSMX Execution Semantics.
WSMX Working Draft D13.2 v0.2,http://www.wsmo.
org/2005/d13/d13.2/v0.2/20050202/ , 2005.

